Evaluating Solar Panel Mechanical Durability of Commercial Modules

Eric Schneller¹
Jason Lincoln¹, Hubert Seigneur¹, Joseph Walters¹, Andrew M. Gabor²

¹ Florida Solar Energy Center, University of Central Florida
² Brightspot Automation
Outline

• **Motivation:** Impact of Cell Cracks and their Origin
• **Methodology:** Typical Mechanical Evaluation Approaches
• **Experimental Results:** Case Study of Commercial Modules
• **Discussion / Conclusions**
Module Mechanical Durability

- PV modules experience a wide range of mechanical stressors over their lifetime that may cause cell cracking
 - shipping, installation, snow, wind, thermal cycling

- Cell cracks pose a risk to long term performance
 - Increase in *series resistance*
 - Increase in “dead area” leading to *current mismatch*
 - Potential for *hot spot* generation
 - Severe hot spots are a potential *safety hazard*

- In this work, a modified mechanical durability test sequence is investigated to evaluate module design with respect to crack durability

[1] “Hot spots: Causes and Effects” PV Magazine 2017
METHODOLOGY
Mechanical Testing Equipment - *LoadSpot*

- Front side is unobstructed to allow for *in-situ* characterization under load

- Electroluminescence Camera and Sinton FMT solar simulator are used for characterization
Typical Mechanical Evaluations – Front Side Loads

• A front side mechanical load puts cells into tension, which propagates micro-cracks into full cell cracks.
• These cell cracks tend to close upon removal of the mechanical load
• This results in very minimal power degradation even with a large number of fractured cells

Figure: Change in maximum power as a function of applied load for both increasing (blue) and decreasing (green) pressure

Typical Mechanical Evaluations – Cyclic Loading

- Standard Cyclic loading sequence is 1000 cycles of ±1000Pa
- Cyclic loading assists in the transition of benign cracks into electrical isolation
- Electrical isolation has been directly related to power loss

SEM images of cell cracks that exhibit electrical conduction (left) and electrical isolation (right) of the metallization

Objective: Evaluate a module design with respect to crack creation and crack opening.
EXPERIMENTAL RESULTS
Module Technologies

<table>
<thead>
<tr>
<th>Cell Technology</th>
<th>Interconnect Technology</th>
<th>Cell Size</th>
<th>Number of Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIT</td>
<td>3 Busbar Low Temperature Interconnects</td>
<td>5 inch pseudo-square</td>
<td>96</td>
</tr>
<tr>
<td>Mono-PERC</td>
<td>4 Busbar Solder Interconnects</td>
<td>6 inch pseudo-square</td>
<td>60</td>
</tr>
<tr>
<td>Multi-PERC</td>
<td>4 Busbar Solder Interconnects</td>
<td>6 inch square</td>
<td>60</td>
</tr>
<tr>
<td>Mono-PERT</td>
<td>Wire Interconnects</td>
<td>6 inch pseudo-square</td>
<td>60</td>
</tr>
</tbody>
</table>
Step 1 – Static Load – Crack Creation

- There is a clear differentiation between module designs with respect to crack creation with a front-side load up to 5400 Pa
Step 2 – Cyclic Loading – Crack Opening

1000 Cycles at ± 1000Pa

- Cyclic loading tends to open cracks on heavily damaged modules (see Multi-PERC)
- Wire interconnects appear to prevent crack opening due to redundant design (see Mono-PERT)

HIT

Mono-PERC

Mono-PERT

Multi-PERC

Multiple Open Cracks Form
Step 3 – Environmental Chamber

TC50 / HF10

Before TC/HF

After TC/HF

HIT
No Change
Handling Mistake
During Transportation

Mono-PERC
No Significant Change

Mono-PERT
Several New Cracks Form

Multi-PERC
Slight Increase in Crack Opening

- Very minimal change in power for all modules
- Minor change in number of cracks and dark area associated with cracks for Mono-PERT and Multi-PERC
Step 4 – Final Mechanical Stress

1000 Cycles at ± 1000Pa

- Thermal Cycling has a major impact on the creation of micro-cracks\(^1\),\(^2\)
- Cell cracks appear to initiate near busbars and propagate with only a mild load of 1000 Pa for Mono-PERT and Multi-PERC Modules.
- The interconnect scheme and choice of encapsulant is the likely reason for superior performance of HIT Modules

Power Degradation

$I-V$ data was captured to assess the impact on performance due to each exposure step.

High Power Loss (> 5%)
- Multi PERC

Mild Power Loss (2-5%)
- Mono PERT
- Mono PERC

No Significant Power Loss
- HIT
Crack Creation

• The number of cracked cells were counted to identify which exposure steps contributed to cell cracks

• The initial frontside load of 5400Pa and the mechanical load after TC/HF contributed the most number of new cracked cells

• The HIT module only exhibited a single crack, which was the result of a handling mistake during transportation
DISCUSSION / CONCLUSION
Discussion

- A modified testing sequence was proposed to evaluate module design with respect to crack durability
 - A large front side static load is used to create cracks
 - Subsequent cyclic loading and thermal cycling is used to open cracks

- Key Takeaways
 1. Large variation in crack durability across commercially available modules
 2. HIT modules, utilizing a symmetric cell structure and low temperature interconnect process, exhibit high durability with respect to crack generation
 3. Mechanical loading after thermal cycling causes a significant number of new cracks for modules with solder interconnects
THANK YOU

eschneller@fsec.ucf.edu

This material is based in part upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number DE-EE0008152
EXTRA SLIDES
Origin of Cell Cracks

Degradation Pathway

- Micro-Defect Created
- Crack Propagation
- Electrical Isolation

Physical Causes

- Cell and Module Processing (Saw Damage Removal, Texturing, Soldering), Impact
- Uniform Mechanical Load, Vibrations (Snow, Wind, Transportation)
- Cyclic Mechanical Loading, Cyclic Thermal-Mechanical
Impact of Single Thermal Cycle

Initial 3600Pa Load 1 Thermal Cycle 3600Pa Load 1000 Cycles at ± 1000 Pa

Cold Exposure on Wire Interconnect Module

Initial 5400Pa Load 1000 Cycles at ± 1000 Pa 1 COLD Cycle 2400Pa Load