LETID AND THE FUTURE OF MODULE DEGRADATION TESTING

A Comparison of Test Methods on Module Level

Esther Fokuhl, Daniel Philipp, Tayyab Naeem, Alexandra Schmid, Paul Gebhardt

Fraunhofer Institute for Solar Energy Systems ISE

Webinar pv magazine
Freiburg, 18.10.2019

www.ise.fraunhofer.de
TestLab PV Modules
Failure Research and Testing Service

Failure analysis
- Identification of root causes and relevant stress factors
- Failure prevention

Testing beyond standards
- Combined stress tests, e.g. UV + humidity
- Test development

PV Module Certification in close Cooperation with VDE since 2005.

© Fraunhofer ISE
LeTID Module Testing
Challenges for EPCs, investors and testing laboratories

- “Black box” PV module
 - LeTID behavior is influenced by various factors, such as firing profiles [1,2], wafer thickness [3], BO-stabilization procedures [4]
 - This information is usually not available
- Long timescales
 - ~years until max. degradation is reached in the field [5]
 - Not detected by IEC 61215-2:2016 MQT 19
- Superposition of more than one process at the same time

- Demands for LeTID module tests
 - Risk estimation
 - Acceptance criterion?
 - Comparability of results
 - Acceptable testing time
- Standardization
 - Discussed for IEC test specification: 75 °C, MPP mode, CID

Commercial Modules

Further Testing

Still degrading

Testing until maximum degradation is too time consuming for module quality testing

→ Stop Criterion?
→ Further acceleration?
What if we accelerate further?

- Start of the regeneration phase within 300h
- Wide range of sensitivity ($\Delta P \approx -1.5\% ... -9\%$)
- Is the maximum detected degradation comparable to slow LeTID test results?

Impp $= (85 \pm 7) ^\circ C$
Commercial Modules
Multi-PERC Comparison

Are the results comparable?

- Direct comparison for two module types (Multi-PERC)
- Comparable performance losses for Multi-PERC K (within the testing time)
- Higher losses in fast test for Multi-PERC G, reason: degradation still ongoing in slow test

$\Delta P / \%$

$R = \pm 0.5 \%$

t / h

Isc-Impc
$(75 \pm 5) \, ^{\circ}C$

Impc
$(85 \pm 7) \, ^{\circ}C$
Are the results comparable?

- Direct comparison for two module types (Mono-PERC)
- Almost no degradation in fast test
- Possible reason: high acceleration of regeneration process → field relevant degradation not detected

Commercial Modules
Mono-PERC

![Graph showing the performance of Mono-PERC modules over time]

- $\Delta P / \%$ vs. time / h
- $R = \pm 0.5 \%$

- Isc-Impm $(75 \pm 3) \, ^\circ C$
- Impm $(85 \pm 7) \, ^\circ C$
6-Cell-Laminates
LID 85°C vs. CID 75°C

Test Equipment LID
- Climatic Chamber
- Integrated AAA Solar Simulator (IEC 60904-9)

To be verified
Conclusions

- LeTID test experience at TestLab PV Modules

- LeTID can be suppressed by some manufacturers
- Discussed for IEC test specification: CID, 75 °C, Isc-Impp,
 - Reliable method for LeTID detection, but long testing times
- Accelerated test: CID, 85 °C, Impp
 - Acceptable testing times
 - Risk of underestimation in case of mono-Si
- Promising solution: only increasing temperature, e.g. 85 °C, MPP mode
 → will be further investigated
Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Esther Fokuhl

www.ise.fraunhofer.de
esther.fokuhl@ise.fraunhofer.de